科技创新 诚信立足

图纸专区

当前位置: 首页 > 新闻中心 > 图纸专区

粉煤灰的应用_

更新日期: 2024-02-25 来源:图纸专区

  掺粉煤灰混凝土的另一典型实例,是1982年英国的Garwick机场的停机坪扩建工程,该工程在两条相邻的道面上对掺与不掺粉煤灰混凝土进行了对比[2]。所用粉煤灰混凝土中粉煤灰用量达到46%。该工程经运行4年后所拍的照片清楚地显示出:与纯硅酸盐水泥混凝土相对照,掺粉煤灰混凝土道面的表面层抗滑构造仍基本完好,而前者则已坑坑点点,受到某些特定的程度的破坏了。这个实际工程事例一方面说明:在低水胶比条件下,即使掺有大量粉煤灰,也能够得到强度和耐久性都十分优异的混凝土;另一方面,对长期以来沿用的,以28d龄期的快速实验结果评价不一样混凝土的耐久性提出了质疑。

  先谈骨料相。通常在为混凝土选择骨料时,第一要注意的是它的颗粒强度,也就是说:它越坚硬越好。事实上,由于骨料的强度通常比其他两相的高很多,因此它对混凝土的强度并没有直接的影响。但是它们的粒径和形状间接地影响混凝土强度:当骨料最大粒径越大、针片状颗粒越多时,其表面积存的水膜越厚,过渡区相就越薄弱,硬化混凝土的强度和抗渗透性也越差。所以,质量好的骨料应该是颗粒形状均匀、级配好,堆积密实度高,所需要的浆体用量少。许多路面板之所以不耐久,骨料质量差,尤其缺乏5~10mm粒径的颗粒,因此传荷能力和抗冲击与疲劳能力受到严重影响是重要的原因。

  根据CANMET在第二届“高强混凝土的应用”国际研讨会发表的论文[5],以水泥150kg/m3、粉煤灰200kg/m3,不掺引气剂并掺高效减水剂将水胶比降至0.29,所配制的大掺量粉煤灰高强混凝土7天强度可达34MPa;28天52MPa;90天70MPa;365天98MPa。

  我们用内蒙元宝山电厂1级粉煤灰、北京2级粉煤灰为原材料,同样以水泥150kg/m3、粉煤灰200kg/m3,并掺高效减水剂调节水胶比为0.30~0.38,配制的混凝土R3=30MPa;R28=50MPa;R1y=80MPa。根据分析,早期强度发展更快是因为所用水泥含碱量较大、活性高,并因此影响了后期强度发展幅度偏小。

  对于粉煤灰的作用机理和应用技术,多年来进行了大量的研究工作,取得了不少进展,这些进展对粉煤灰在混凝土中的应用起了一定的推动作用。如掺用的方法从等量替代水泥,发展到超掺法、代砂法以及与化学外加剂同时使用的双掺法。对于粉煤灰的作用机理,从主要是火山灰质材料特性的作用(消耗了水泥水化时生成薄弱的,而且往往富集在过渡区的氢氧化钙片状结晶,由于水化缓慢,只在后期才生成少量C-S-H凝胶,填充于水泥水化生成物的间隙,使其更加密实),慢慢地发展到分析它还具有形态效应、填充效应和微集料效应等。但无论哪一方面的研究成果,似乎都改变不了这样一个事实:在混凝土中掺粉煤灰要降低混凝土的强度,包括28天龄期以后一段时间里的强度,其他性能当然也相应受到不同程度的影响,而且这些影响要随着掺量的增大而加剧。这个事实始终禁锢着粉煤灰在混凝土中,尤其是结构混凝土中的掺量,而且似乎形成了这样一种成见:掺用粉煤灰是以牺牲结构混凝土的品质为代价的。

  长期以来,国内外在混凝土中常掺有一定量粉煤灰,但作为水泥的替代材料,绝大多数情况下是以如下三种方式应用的:在早期强度要求很低,长期强度大约在25~35MPa的大体积水工混凝土中,大掺量地替代水泥使用;在结构混凝土里较少量地替代水泥(10~25%);在强度要求很低的回填或道路基层里大量掺用。

  80年代初,美国佛罗里达州建造了一座非常宏伟的跨海大桥,在该桥的建设过程中,考虑到周围的侵蚀性环境,在混凝土里掺用了大量粉煤灰,工程质量有很大改善。因而在1983年修订规范时,对原来随意使用粉煤灰的规定进行了修订[1]。新规范(S-346)规定:在中度以上侵蚀环境中的桥梁上部结构,包括预应力构件的混凝土中,必须掺用粉煤灰。其中大体积混凝土中粉煤灰的掺量为18~50%。

  事实上,如前所述,由于高效减水剂的应用,使混凝土的水胶比可以大幅度降低,从而使掺用粉煤灰的效果大为改善,使大掺量粉煤灰混凝土的性能能够大幅度地提高。

  1)水胶比的影响 水胶比的上述变化为什么影响这么大呢?在高水胶比的水泥浆里,水泥颗粒被水分隔开(水所占体积约为水泥的两倍),水化环境优异,可以迅速地生成表面积增大1000倍的水化物,有良好地填充浆体内空隙的能力。粉煤灰虽然从颗粒形状来说,易于堆积得较为密实,但是它水化缓慢,生成的凝胶量少,难以填充密实颗粒周围的空隙,所以掺粉煤灰水泥浆的强度和其他性能总是随掺量增大(水泥用量减少)呈下降趋势(当然在早龄期就更加显著)。

  因为过渡区的影响,使混凝土在比它两个主要相可承受的应力低得多的时候就被破坏;由于过渡区大量孔隙和微裂缝存在,所以虽然硬化水泥浆体和骨料两相的刚性很大,但受它们之间传递应力作用的过渡区影响,混凝土的刚性和弹性模量明显地减小。

  过渡区的特性对混凝土的耐久性影响也很显著。因为硬化水泥浆体和骨料两相在弹性模量、线胀系数等参数上的差异,在反复的荷载、冷热循环与干湿循环作用下,过渡区作为薄弱环节,在较低的拉应力作用下其裂缝就会逐渐扩展,使外界水分和侵蚀性离子易于进入,对混凝土及钢筋产生侵蚀作用。

  概述早在2000多年前的古罗马时期人类就用火山灰与石灰混合作为胶凝材料建造了许多雄伟的建筑物例如万神殿其直径为44m的半球形穹顶就使用了12000粉煤灰在混凝土中的作用粉煤灰的应用粉煤灰在混凝土中的作用一概述早在2000多年前的古罗马时期人类就用火山灰与石灰混合作为胶凝材料建造了许多雄伟的建筑物例如万神殿其直径为44m的半球形穹顶就使用了12000概述粉煤灰的应用粉煤灰在混凝土中的作用一概述早在2000多年前的古罗马时期人类就用火山灰与石灰混合作为胶凝材料建造了许多雄伟的建筑物例如万神殿其直径为44m的半球形穹顶就使用了12000早在2000多年前的古罗马时期人类就用火山灰与石灰混合作为胶凝材料建造了许多雄伟的建筑物例如万神殿其直径为44m的半球形穹顶就使用了12000吨这种胶凝材料和凝灰岩轻骨料拌合而成的混凝土

  加拿大矿产与能源技术中心(CANMET)自1985年以来,对大掺量粉煤灰混凝土进行了深入而广泛的研究[4],由于该国处寒带地区,因此通常在混凝土里掺有引气剂,并保持含气量在5~6%,在这种前提下,以水泥150kg/m3,粉煤灰200kg/m3,通过高效减水剂将水胶比降到0.3左右,所配制的混凝土抗压强度28天为30~40MPa;90天40~50MPa;1年50~60MPa。大掺量粉煤灰混凝土的成功试验,使其在哈利法克斯的帕克林购物中心施工中用于浇注巨大的柱子,拌合物含55%低钙粉煤灰、45%硅酸盐水泥,以及就地取材的砂、石和高效减水剂。这些柱子一共用去700m3大掺量粉煤灰混凝土;在哈利法克斯海边处于海洋环境的建筑物群施工中也得到应用。该建筑物位于海边,包括两幢商业大厦的公共建筑,其32根直径1.2m和30根直径1.1m的框架柱沉箱,平均长度在21m。采用大掺量粉煤灰混凝土的最主要的原因,是其抗渗性能优异。在渥太华附近的大卫伏劳瑞达实验室,工程师们用CANMET开发的大掺量粉煤灰混凝土设计了一个重360吨的混凝土平台。为降低水化热,以粉煤灰、Ⅱ型(低热)水泥、水、粗细骨料、引气剂和高效减水剂混合配制。平台的尺寸是7×8m,平均厚度2.25m,安放在多个充气圆柱体上,因此其震动与地面分离。由于粉煤灰混凝土特殊的品质,发射火箭产生的冲击不会引起平台共振。随着龄期增长,平台混凝土的共振频率以每年0.05Hz的速度增长,质量慢慢的变好。在该平台上成功地发射了爱那克依火箭的事实雄辩地证明:粉煤灰混凝土可以看作是真正的太空时代的建筑材料。

  早在2000多年前的古罗马时期,人类就用火山灰与石灰混合作为胶凝材料,建造了许多雄伟的建筑物,例如万神殿,其直径为44m的半球形穹顶就使用了12000吨这种胶凝材料和凝灰岩轻骨料拌合而成的混凝土;还有闻名于世的圆形剧场等,这些建筑现在仍然安然无恙,2000年还有报道意大利人正在翻修圆形剧场,准备在那里面举行盛大的演出。今天在混凝土中掺用的粉煤灰,也是一山灰材料,大量的实践证明:掺用粉煤灰的混凝土,其长期性能得到大幅度的改善,对延长结构物的常规使用的寿命有重要意义。

  在建筑工程中,我们与北京城建集团总公司构件厂合作,在自密实混凝土中掺用30~45%粉煤灰作为增粘剂,保证了这种混凝土有足够粘聚性,不致发生离析与泌水现象,而且可在数小时里就没有坍落度损失,满足长途运输后仍然能够自密实的效果。该成果(大掺量粉煤灰混凝土在建筑工程中的应用)于1998年12月获得北京市科学技术进步三等奖。

  在公路工程建设中,由咱们提供技术咨询服务,自1994年以来于广东深-汕等四条近100km高速公路路面混凝土中掺用粉煤灰20~40%,取得明显提高滑模摊铺机摊铺路面板的质量(提高路面宏观平整度、明显减少开裂)、减小进口设备损耗并降低水泥用量等技术与经济综合效益。

  为了便于认识粉煤灰在混凝土中的作用,先来看看混凝土的结构和性能之间的关系。混凝土是由大小不同的颗粒所组成的,大颗粒粗骨料的空隙由中小颗粒的粗骨料(石子)填充;粗骨料颗粒的空隙由细骨料(砂子)填充,它的颗粒也是有粗有细,细颗粒填充粗颗粒之间的空隙;水泥浆则填充粗细骨料堆积体的大小空隙,并包裹它们形成一层润滑层,使新拌混凝土(也称拌合物)具有一定的工作性,能在外力或本身的自重作用下成型密实。硬化混凝土是一种复杂的、多相的复合材料,它的结构最重要的包含三个相——骨料、硬化水泥浆体以及二者之间的过渡区,说它复杂是因为它很不匀质,大多数表现在以下几方面:

  现在作为混凝土主要胶凝材料的硅酸盐水泥,同样是以石灰石和粘土为主要的组成原材料经过煅烧生成的。它问世于19世纪的30年代,至今尚不到200年历史,因此用硅酸盐水泥配制成混凝土建造的各种建筑物最长只有100多年,而国内近些年修建的一些土木工程结构物运行不多年,就出现各种病害,甚至很快就遭到严重的破坏。例如北京的西直门立交桥,运行仅20年就必须拆除重建;更有甚者,据某省交通科研所一位所长坦言,那里的混凝土路面运行三年不坏的很少!

  粉煤灰在混凝土公路路面中的应用举一个例子。Mehta教授曾提到[3]:在美国大约70%的低交通量公路与地方公路要升级,考虑用大掺量粉煤灰代替水泥以降低造价,电力研究院(EPRI)出资搞了几个示范工程:在北达科他州,1988和1989年夏天,用20000m3粉煤灰混凝土铺筑厚为200mm的路面,其水胶比为0.43,水泥用量100Kg/m3、粉煤灰220Kg/m3。

  试验表明:即使所用骨料非常致密,混凝土的渗透性也要比相应的水泥浆体低一个数量级。这说明:混凝土体的渗透性并不直接取决硬化水泥浆体的渗透性,那么更主要的影响来自什么地方呢?答案只能是:来自过渡区。刚浇筑成型的混凝土在其凝固硬化之前,骨料颗粒受重力作用向下沉降,含有大量水分的稀水泥浆则由于密度小的原因向上迁移,它们之间的相对运动使骨料颗粒的周壁形成一层稀浆膜,待混凝土硬化后,这里就形成了过渡区。过渡区微结构的特点为:1)富集大晶粒的氢氧化钙和钙矾石;2)孔隙率大、大孔径的孔多;3)存在大量原生微裂缝,即混凝土未承载之前出现的裂缝。

  再谈硬化水泥浆体(也称水泥石)。在配制混凝土选用水泥时,都认为标号越高的水泥就越好。事实上,高标号水泥因为通常粉磨得越细,在拌合时往往需要更加多的水,硬化后生成更多薄弱的氢氧化钙,多余的水分蒸发后也会形成更多的孔隙,对混凝土的强度和耐久性不利。但是,这样的水泥水化反应快,因此用它配制的混凝土早期强度高,这是它受欢迎,售价高的原因。

  2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混凝土水胶比较低时,水化缓慢的粉煤灰能够给大家提供水分,使水泥水化得更充分。

  3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。

  4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。

  了解混凝土的微结构的特性及其对性能的影响后,就可以更好地认识粉煤灰在混凝土中的作用。粉煤灰的最大的作用可以包括以下几方面:

  1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。

  第一,过渡区的存在。过渡区是围绕骨料颗粒周边的一层薄壳,厚度约10~50μm。由于它的薄弱,对混凝土性能的影响十分显著;第二,三相中的任一相,本身实际上还是多相体。例如一颗花岗岩的骨料里除了有微裂缝、孔隙外,还不均匀地镶嵌着石英、长石和云母三种矿物。石英很硬,而云母就很软;第三,与其他工程材料不同,混凝土结构中的两相——硬化水泥浆体和过渡区是随时间、温度与湿度环境一直在变化着的。

上一篇:怎么来处理和使用粉煤灰

下一篇:「我的工程机械网」11月16日重庆二手挖机商场华南重工挖掘机价格

联系我们

Tel : 13605208018
Fax :0516-85758076
手机 : 13605208018 陈来如